Fractional Laplacian – Quadrature Rules for Singular Double Integrals in 3D

نویسندگان

چکیده

Abstract In this article, quadrature rules for the efficient computation of stiffness matrix fractional Laplacian in three dimensions are presented. These based on Duffy transformation, which is a common tool singularity removal. Here, transformation adapted to needs dimensions. The integrals resulting from regular over less-dimensional domains. We present bounds number Gauss points guarantee error estimates same order magnitude as finite element error. methods presented article can easily be other singular double with algebraic singularities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature rules for singular integrals on unbounded intervals

The importance of singular and hypersingular integral transforms, coming from their many applications, justifies some interest in their numerical approximation. The literature about the numerical evaluation of such integrals on bounded intervals is wide and quite satisfactory; instead only few papers deal with the numerical evaluation of such integral transforms on half-infinite intervals or on...

متن کامل

Gauss-Jacobi-type quadrature rules for fractional directional integrals

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...

متن کامل

On Generalized Gaussian Quadrature Rules for Singular and Nearly Singular Integrals

We construct and analyze generalized Gaussian quadrature rules for integrands with endpoint singularities or near endpoint singularities. The rules have quadrature points inside the interval of integration and the weights are all strictly positive. Such rules date back to the study of Chebyshev sets, but their use in applications has only recently been appreciated. We provide error estimates an...

متن کامل

Quadrature methods for highly oscillatory singular integrals

We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational methods in applied mathematics

سال: 2023

ISSN: ['1609-4840', '1609-9389']

DOI: https://doi.org/10.1515/cmam-2022-0159